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Semiclassical quantization of a separatrix map is presented. An effective Hamiltonian is constructed as a
function of the action-angle canonical pair. The quantum dynamics of the system is analyzed for the case of
high-frequency perturbation. An explicit form of the Floquet evolution operator is obtained in the unperturbed
basis. Quasienergy level spacing statistics is studied. It is shown that the statistics is Poissonian as a result of
the bounding nature of the Floquet matrix. This effect indicates a quantum localization process as well.
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PACS number~s!: 05.451b, 03.65.Sq

Investigation of chaotic motion inside a separatrix layer
has a long history but is still of interest in classical and
quantum dynamics. The chaotic phenomenon produced by a
separatrix map is used to describe a variety of problems such
as limited and unlimited diffusion, both classical and quan-
tum, in a separatrix mesh@1,2#, current-driven Josephson
junction @3#, two-dimensional~2D! electronic motion in su-
perlattices@4#, breakdown of adiabatic invariance due to
quantum dynamics near a classical separatrix in a double-
well potential @5#. The separatrix map was obtained by
Zaslavsky and co-workers in the investigation of a separatrix
splitting @6# in the framework of the Hamiltonian@7#

H5
p2

2
2cosx2« cos~x2lt ![H01«V~x,t !, ~1!

where (p,x) is dimensionless momentum-coordinate canoni-
cal pair,t is dimensionless time, while« is the strength of a
perturbation andl is its frequency. Calculating energy
change upon a periodT of the unperturbed motion described
by H0 one obtains the Poincare´-Melnikov integral @8#. It
reads

DE52eE
0

T]H0

]p

]V

]x
dt.

Evaluating this integral in the vicinity of a separatrix, one
obtains the separatrix map in the following form:

Ē5E1e~l!sinlt,

t̄ 5t1T~Ē!, ~2!

where T[T(E)5 ln(32/uEu) and e(l).2p«l2e2pl/2 @9#.
The overbar for the energy in the second equation in~2! is
taken so that the map is Hamiltonian. In Ref.@9# this equa-
tion was obtained as well under investigation of separatrix
dynamics in the framework of the standard model.

A quantum mechanical counterpart of the system~2! was
considered by Bubner and Graham for the case of high-
frequency perturbationl@1 @3#. The problem of quantum
transport inhibition by a localization effect has been consid-
ered in the framework of energy-time quantization. It has
been stressed in@3# that the main deficiency of such an ap-
proach is an appearance of an unphysical time parameter
@10,11#.

In this paper an approach enabling the use semiclassical
quantization in the framework of the action-angle variables
for the system~2! is presented. An effective Hamiltonian as
a function of the action-angle pair (I ,u)and the same real
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time t is constructed. The effective Hamiltonian describes
meaningfully the dynamics of the system~2!. The quantum
dynamics of the system is analyzed in the framework of clas-
sical high-frequency expansion and a semiclassical initial-
value representation method@12,13#. It results in an explicit
form of the Floquet evolution operator in the unperturbed
basis. Level spacing distribution of a quasienergy spectrum
is studied. A Poisson distribution of energy levels is found. It
indicates a quantum localization process, reported in Ref.@3#
as well. In the case of the high-frequency perturbation a local
approximation by the standard map is valid@9#. Following
that, we obtain

DE5 Ē2E52e~l!sinlt;

t̄ 5t1
2pk

l
2
Ē
Er

, ~3!

where E5Er1E, E!Er . The resonant energyEr , deter-
mined by the resonance conditionlT(Er)52pk, is

Er532 expS 2
2pk

l D . ~4!

The map~3! is much simpler for analysis, and still possesses
the main features of the original separatrix map. In the ab-
sence of the perturbation,E is energy of a periodic motion
with a frequency

v~ I !5
dE
dI

5
2p

T~E! 52pS 2pk

l
2
E
Er

D 21

.

Solving this equation, and taking into account the condition
l2I /pk2Er!1, we obtain finally an effective Hamiltonian of
the unperturbed motion:

H0[E5VI2
mI 2

2
, ~5!

where

V5
l

k
, m5

l3

pk3Er
. ~6!

When the separatrix is approached, i.e., in the limit
I→Imax, the frequency vanishes@v(I )→0#. The energy
change resulting from the perturbation over timeDt5T
reads from~3! and ~5! as

DH05E
Dt

v~ I ! İ dt52e~l!sinlt

52
e~l!

l E
Dt

S d

dt8
d2p~ t82t ! D coslt8dt8, ~7!

whered2p(z) is periodic with a period-2p d function. Com-
paring integrands from the left and right hand sides of Eq.
~7! we obtain for the arbitraryDt the following equations of
motion for the action-angle pair:

İ52
e~l!

l
v~ I !d2p8 ~u!coslt,

u̇5v~ I !, ~8!

where d2p8 (u)[(d/du)d2p(u). These equations of motion
are not Hamiltonian. To obtain such equations the perturba-
tion of the form {@e(l)#/l} v8(I )d2p(u)coslt is added to
the second equation of~8!. Finally, chaotic dynamics near
the separatrix is described by the following effective Hamil-
tonian:

H5H01
e~l!

l
v~ I !d2p~u!coslt. ~9!

It is simple to show from~8! and ~9! that an influence of
adding the perturbative term is negligibly small, when
e(l)v8(I )/v(I )!1. It is worthwhile to note in this connec-
tion that the procedure described above is quite general for a
wide class of the Kepler-like maps.

For the following analysis we replacev(I ) by V in the
Hamiltonian~9!. For long-term dynamics all these errors ac-
cumulate. For the short time scale of the order of the period
of the perturbation, upon which the Floquet evolution opera-
tor is obtained below, this error does not affect the dynamics,
but simplifies the following quantum analysis. It should be
stressed that the effective Hamiltonian~9! describes the reso-
nances taking place in~3! with the same criterion for ex-
tended chaos. It follows from~3! and ~9! that lT(Er)
52pk andlv(I r)5l, wherek andl are integers, whileI r is
a resonant action corresponding to thel th resonance. The
simplification carried out above slightly changes the crite-
rion: K5(2/p)K0, where K05@le(l)#/Er is the critical
value found by the Chirikov criterion for chaos in the stan-
dard map~3!.

The Hamiltonian formulation of the problem allows semi-
classical quantization in the action-angle formulation:I→ Î
5\n̂52 i\(]/]u). Here\ is a dimensionless Planck con-
stant defined from the number of states inside the energy
shell. Semiclassical consideration requires that the width of
the perturbative potential is larger than the de Broglie
wavelength. In this connection it is necessary to restrict
summation in the Fourier expansion of thed2p(u) potential.
Then we obtain a new potential with the width of a
spike equal to 2p/N: dN(u)52(k50

N cosku21, where
dN(u) tends tod2p(u) asN tends to infinity. It is simple to
show from the following analysis that

f ~0!5E
a

2p1a

f ~u!d2p~u!5E
a

2p1a

f ~u!dN~u!1O~1/N!,

where f (x) is a periodic function with a period 2p, and
1/\@N@1. Terms of orderO(1/N) are omitted in the fol-
lowing analysis.

The eigenvalue equation for the Floquet evolution opera-
tor Û5T̂ exp{2(i/\)*0

tH(t8)dt8} in the n representation
reads

(
n8

Un,n8cn85e2 ixncn , ~10!

where cn is a quasienergy function with a corresponding
quasienergyxn , T̂ is the time ordering operator, andt
52p/l is a period of the perturbative field. The initial-value
representation @12,13# for the transition amplitude
K(\n8;\n)5(1/\)Un,n8 is used for the following semiclas-
sical analysis@14#. In this case the semiclassical propagator
takes the form@12#
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K~ I 8,t8;I ,t !'
1

2p\E0
2pS ]u f~u0!

]u0
D 1/2expH i\ F~u0!J du0 ,

~11!

where

F~u0!5@ I f~u0!2I 8#u f~u0!2E
t

t8
dt8$u~t8! İ ~t8!

1H@ I ~t8!,u~t8!#%, ~12!

and the condition]u f(u0)/]u0Þ0 is assumed. Indices 0 and
f denote the initial and the final points, respectively, for a
classical trajectory determined by the Hamiltonian~9!. Solv-
ing the classical equations for the periodt one obtains in the
leading order of the perturbation theory

I f[I ~t!'H I 0 , t,t*

I 01
e~el!

V
sinlt* , t>t* ,

~13!

u f[u~t!'u01v~ I 0!t.

Heret* (u0)5(2p2u0)/v determines a time interval of the
free motion before the kick. Substituting~13! in ~11! and
~12! one writes the matrix elements of the Floquet operator
in the form

Un,n85
1

2pE0
2p

expH i\ F~u0!J du0 ,

1

\
F~u0!52

2p

\l
H1~\n!1

e

\l
coslt* ~u0!1~n2n8!u0

1
2pV

l
~n2n8!, ~14!

where the condition]u f /]u051 following from ~13! is taken
into account. Carrying out the integral in~14! in the station-
ary phase approximation one obtains

Un,n85e2 i @~2pH
8
!/\l#

35
11

V

l
@J0~k!21# if n5n8

V

l
eipV~n2n8!/2lJn~k! if n.n8

V

l
ei3pV~n2n8!/2l Junu~k! if n,n8,

~15!

where n5v(n2n8)/l and k5e/\l. Matrix elements are
exponentially small forunu>k andk@1. It follows from this

that the maximal number of nonvanishing off-diagonal ele-
ments in a string or column is determined by the expression
Dn[un2n8u5e/\V5ek/\l. Using the definition of the
number states in the energy shell,N5\21*0

ErT(E)dE
;Imax/\, we can define the condition for the level clustering.
It reads as z5Dn /N,1. Taking into account that
K5el/Er andK;l2/4, one obtains

z5
4K

pl2 . ~16!

In the case whenl.p, it follows from ~16! that z,1 and,
hence, the matrixU is bounded. Therefore, quasienergiesx
have a Poisson distribution whenK.1 as well@15–18#. Nu-
merical diagonalization of the matrixU~3753375! and sta-
tistical analysisx show the Poisson level spacing distribution
of quasienergies forp<l< 4

3p and 1.3,K,3l.
Condition ~16! shows that the quantum dynamics inside

the separatrix energy shell does not obey to the conditions of
‘‘maximal quantum chaos’’@18#, namely, the localization
length in the energy space exceeds the energy scale. Hence
the clustering of the quasienergies takes place, the quasi-
energies are not ergodic, and, therefore, their statistics is
Poissonian even for strong chaotic motion of the classical
counterpart. Of course, we can consider the conditions when
K is large enough thatz@1, and the condition for ‘‘maximal
quantum chaos’’ takes place. But in this case the number of
levels inside the stochastic layer is so small~or it is empty!
that it is meaningless to speak about any statistics in the
quasienergy spectrum. Mathematically, at fixedl ande, the
stochasticity parameterK tends to infinity whenEr tends to
zero. Hence the number of states inside the separatrix energy
shellN}Er tends to zero.

Finally the following limitation should be noted. When
the number of levels inside the energy shell is small, a semi-
classical approach is not valid. This means that in the case
whenK@1 the system cannot be quantized semiclassically
in the framework of the action-angle formulation@ I→
2 i\(]/]u)#. This conclusion is based on the fact that the
canonical transformation

S 2 i
]

]x
,xD→S 2 i

]

]u
,u D

analogous to the classical one (p,x)→(I ,u) can be made
only in the semiclassical limit@19#. So, this quantum prob-
lem forK@1 cannot be studied in the framework of the local
approximation~3! but only in the framework of the initial
separatrix map problem~2!.
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